Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chaos Solitons Fractals ; 164: 112671, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36091637

RESUMO

The level of unpredictability of the COVID-19 pandemics poses a challenge to effectively model its dynamic evolution. In this study we incorporate the inherent stochasticity of the SARS-CoV-2 virus spread by reinterpreting the classical compartmental models of infectious diseases (SIR type) as chemical reaction systems modeled via the Chemical Master Equation and solved by Monte Carlo Methods. Our model predicts the evolution of the pandemics at the level of municipalities, incorporating for the first time (i) a variable infection rate to capture the effect of mitigation policies on the dynamic evolution of the pandemics (ii) SIR-with-jumps taking into account the possibility of multiple infections from a single infected person and (iii) data of viral load quantified by RT-qPCR from samples taken from Wastewater Treatment Plants. The model has been successfully employed for the prediction of the COVID-19 pandemics evolution in small and medium size municipalities of Galicia (Northwest of Spain).

2.
Environ Sci Technol ; 56(12): 7381-7395, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35670676

RESUMO

The spectrophotometric methodology for carbonate ion determination in seawater was first published in 2008 and has been continuously evolving in terms of reagents and formulations. Although being fast, relatively simple, affordable, and potentially easy to implement in different platforms and facilities for discrete and autonomous observations, its use is not widespread in the ocean acidification community. This study uses a merged overdetermined CO2 system data set (carbonate ion, pH, and alkalinity) obtained from 2009 to 2020 to assess the differences among the five current approaches of the methodology through an internal consistency analysis and discussing the sources of uncertainty. Overall, the results show that none of the approaches meet the climate goal (± 1 % standard uncertainty) for ocean acidification studies for the whole carbonate ion content range in this study but usually fulfill the weather goal (± 10 % standard uncertainty). The inconsistencies observed among approaches compromise the consistency of data sets among regions and through time, highlighting the need for a validated standard operating procedure for spectrophotometric carbonate ion measurements as already available for the other measurable CO2 variables.


Assuntos
Dióxido de Carbono , Água do Mar , Carbonato de Cálcio , Dióxido de Carbono/análise , Carbonatos , Concentração de Íons de Hidrogênio , Oceanos e Mares , Espectrofotometria/métodos
3.
Sci Total Environ ; 833: 155140, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35421481

RESUMO

This study presents the results of SARS-CoV-2 surveillance in sewage water of 11 municipalities and marine bioindicators in Galicia (NW of Spain) from May 2020 to May 2021. An integrated pipeline was developed including sampling, pre-treatment and biomarker quantification, RNA detection, SARS-CoV-2 sequencing, mechanistic mathematical modeling and forecasting. The viral load in the inlet stream to the wastewater treatment plants (WWTP) was used to detect new outbreaks of COVID-19, and the data of viral load in the wastewater in combination with data provided by the health system was used to predict the evolution of the pandemic in the municipalities under study within a time horizon of 7 days. Moreover, the study shows that the viral load was eliminated from the treated sewage water in the WWTP, mainly in the biological reactors and the disinfection system. As a result, we detected a minor impact of the virus in the marine environment through the analysis of seawater, marine sediments and, wild and aquacultured mussels in the final discharge point of the WWTP.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Biomarcadores Ambientais , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Prevalência , RNA Viral , Esgotos , Águas Residuárias , Água
4.
Environ Sci Technol ; 54(18): 10977-10988, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32515956

RESUMO

Ocean acidification (OA)-or the decrease in seawater pH resulting from ocean uptake of CO2 released by human activities-stresses ocean ecosystems and is recognized as a Climate and Sustainable Development Goal Indicator that needs to be evaluated and monitored. Monitoring OA-related pH changes requires a high level of precision and accuracy. The two most common ways to quantify seawater pH are to measure it spectrophotometrically or to calculate it from total alkalinity (TA) and dissolved inorganic carbon (DIC). However, despite decades of research, small but important inconsistencies remain between measured and calculated pH. To date, this issue has been circumvented by examining changes only in consistently measured properties. Currently, the oceanographic community is defining new observational strategies for OA and other key aspects of the ocean carbon cycle based on novel sensors and technologies that rely on validation against data records and/or synthesis products. Comparison of measured spectrophotometric pH to calculated pH from TA and DIC measured during the 2000s and 2010s eras reveals that (1) there is an evolution toward a better agreement between measured and calculated pH over time from 0.02 pH units in the 2000s to 0.01 pH units in the 2010s at pH > 7.6; (2) a disagreement greater than 0.01 pH units persists in waters with pH < 7.6, and (3) inconsistencies likely stem from variations in the spectrophotometric pH standard operating procedure (SOP). A reassessment of pH measurement and calculation SOPs and metrology is urgently needed.


Assuntos
Ecossistema , Água do Mar , Carbono/análise , Dióxido de Carbono/análise , Humanos , Concentração de Íons de Hidrogênio , Oceanos e Mares
5.
Environ Sci Technol ; 49(19): 11679-87, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26321414

RESUMO

Measurements of ocean pH, alkalinity, and carbonate ion concentrations ([CO3(2-)]) during three cruises in the Atlantic Ocean and one in the Mediterranean Sea were used to assess the reliability of the recent spectrophotometric [CO3(2-)] methodology and to determine aragonite saturation states. Measurements of [CO3(2-)] along the Atlantic Ocean showed high consistency with the [CO3(2-)] values calculated from pH and alkalinity, with negligible biases (0.4 ± 3.4 µmol·kg(-1)). In the warm, salty, high alkalinity and high pH Mediterranean waters, the spectrophotometric [CO3(2-)] methodology underestimates the measured [CO3(2-)] (4.0 ± 5.0 µmol·kg(-1)), with anomalies positively correlated to salinity. These waters also exhibited high in situ [CO3(2-)] compared to the expected aragonite saturation. The very high buffering capacity allows the Mediterranean Sea waters to remain over the saturation level of aragonite for long periods of time. Conversely, the relatively thick layer of undersaturated waters between 500 and 1000 m depths in the Tropical Atlantic is expected to progress to even more negative undersaturation values. Moreover, the northern North Atlantic presents [CO3(2-)] slightly above the level of aragonite saturation, and the expected anthropogenic acidification could result in reductions of the aragonite saturation levels during future decades, acting as a stressor for the large population of cold-water-coral communities.


Assuntos
Carbonato de Cálcio/análise , Carbonatos/análise , Água do Mar/análise , Espectrofotometria/métodos , Animais , Antozoários/fisiologia , Oceano Atlântico , Concentração de Íons de Hidrogênio , Mar Mediterrâneo , Reprodutibilidade dos Testes , Salinidade
6.
Proc Natl Acad Sci U S A ; 112(32): 9950-5, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26216947

RESUMO

Global ocean acidification is caused primarily by the ocean's uptake of CO2 as a consequence of increasing atmospheric CO2 levels. We present observations of the oceanic decrease in pH at the basin scale (50 °S-36 °N) for the Atlantic Ocean over two decades (1993-2013). Changes in pH associated with the uptake of anthropogenic CO2 (ΔpHCant) and with variations caused by biological activity and ocean circulation (ΔpHNat) are evaluated for different water masses. Output from an Institut Pierre Simon Laplace climate model is used to place the results into a longer-term perspective and to elucidate the mechanisms responsible for pH change. The largest decreases in pH (∆pH) were observed in central, mode, and intermediate waters, with a maximum ΔpH value in South Atlantic Central Waters of -0.042 ± 0.003. The ΔpH trended toward zero in deep and bottom waters. Observations and model results show that pH changes generally are dominated by the anthropogenic component, which accounts for rates between -0.0015 and -0.0020/y in the central waters. The anthropogenic and natural components are of the same order of magnitude and reinforce one another in mode and intermediate waters over the time period. Large negative ΔpHNat values observed in mode and intermediate waters are driven primarily by changes in CO2 content and are consistent with (i) a poleward shift of the formation region during the positive phase of the Southern Annular Mode in the South Atlantic and (ii) an increase in the rate of the water mass formation in the North Atlantic.


Assuntos
Ácidos/química , Água/química , Oceano Atlântico , Atividades Humanas , Humanos , Concentração de Íons de Hidrogênio , Água do Mar/química , Temperatura
7.
Anal Bioanal Chem ; 394(3): 893-901, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19360402

RESUMO

The headspace solid-phase micro-extraction technique with on-fibre derivatisation followed by gas chromatography-tandem mass spectrometry has been evaluated for the analysis of 1,3-dichloro-2-propanol in water. An asymmetric factorial design has been performed to study the influence of five experimental factors: extraction time and temperature, derivatisation time and temperature and pH. The best extraction performance is achieved in the headspace mode, with 5 mL stirred water samples (pH 4) containing 1.3 g of NaCl, equilibrated for 30 min at 25 degrees C, using divinylbenzene-carboxen-polydimethylsiloxane as the fibre coating. On-fibre derivatisation has been used for the first time with 50 microL of bis(trimethylsilyl)trifluoroacetamide at 25 degrees C during 15 min, leading to effective yields. The proposed method provides high sensitivity, good linearity and repeatability (relative standard deviation of 5.1% for 10 ng mL(-1) and n = 5). The limits of detection and quantification were 0.4 and 1.4 ng mL(-1), respectively. Analytical recoveries obtained for different water samples were approx. 100%.


Assuntos
Acetamidas/química , Microextração em Fase Sólida/métodos , Compostos de Trimetilsilil/química , Água/química , alfa-Cloridrina/análogos & derivados , Concentração de Íons de Hidrogênio , Estrutura Molecular , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Temperatura , Fatores de Tempo , alfa-Cloridrina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...